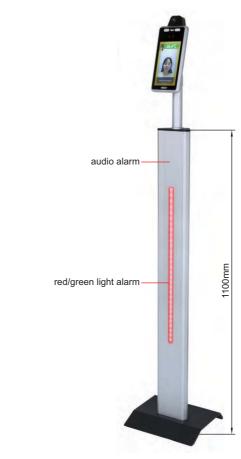
FACE RECOGNITION THERMAL SCANNER 4 IN 1

- **TEMPERATURE DETECTION**
- MASK DETECTION
- **TIME ATTENDANCE**
- ACCESS CONTROL

ATF-1612


Code	Description
ATF-1612	With desk stand

Code Description
ATF-1612L With floor stand for children

With mount for door control

ATF-1612N

ATF-1612H

Code	Description
ATF-1612H	With floor stand

Infrared Thermal Imaging Camera

- Optimized for human body temperature measurement (±0.3°C)
- Distance range: 0.5~1.2m
- Real-time measurement (< 0.1 second)

Dual Camera with Advanced Algorithm

- High Face ID accuracy at 99.9%
- Support Face ID identification with face mask (accuracy 90%)
- High performance face anti-spoofing technology protects system from attack
- Real-time face recognition (< 0.2 second)

■ This device introduces a highly advanced built-in facial recognition algorithm and high resolution infrared thermal imaging camera. This brand new technology will identify someone by face, even while wearing a face mask. It locates the forehead and measures forehead temperature without touch. This device is the ideal solution for fully automatic contactless access control, time attendance, and temperature measurement.

Features:

Access at a glance

Walk through identification & authorization, no slowing down or stopping needed.

■ Contactless forehead temperature measurement

High resolution infrared thermal imaging camera enhanced by an algorithm provides instant and high accuracy forehead temperature measurement with zero human involvement in less than 0.1 second.

The new technology comes pre-calibrated and has automatic temperature calibration through software and algorithm when the camera is turned on every time. This eliminates the need for a calibration system generally referred to as a black body. This eliminates not just added cost but human error when attempting to calibrate.

- (1) To be used for initial temperature assessment for triage use in high throughput areas (e.g., airports, businesses, warehouses, factories) due to the high detection speed.
- (2) Working distance is 0.5-1.2m and no operation needed, which can avoid inter infection.
- (3) Captures photo of people when abnormal body temperature is detected, which can be used for tracing.

■ High accurate & reliable face ID

Built-in world class facial recognition algorithm with dual cameras detects the identification in less than 0.2 seconds with the accuracy rate more than 99.9%. High performance face anti-spoofing technology can resist many kinds of presentation attack, such as, printed photo, the electronic display of a facial photo, replaying video using an electronic display and 3D face masks. Enhanced facial recognition algorithm can identify people even if they are wearing masks with the accuracy rate more than 90%.

Detect someone wearing or not wearing a mask

Use:

- This device is for indoor use only. It detects one person at a time.
- The device is used for initial temperature assessment. The final temperature should be confirmed with secondary evaluation methods (e.g., clinical grade contact thermometer).
- Select "Temperature", "Mask" and "Face recognition" as conditions to trigger alarm or to control door opening.
- For hospital / restaurant / hotel / retail store, etc., it can be used as thermal detector and/or mask detector. No need to input facial pictures in advance. It will alert you when the forehead temperature is above the preset target (for example, 37.3°C), for people with or without marks. It can also detect if people wear or not wear masks.
- A plant or school can have this set up at entrance for access control and time attendance, as well as temperature and mask detection. Input face pictures taken with a cell phone in advance for facial recognition. The readings can be monitored in an office.

Visitor-

time attendance record including staffs and visitors (temperature documentation)

	ID	Name	Gender	Age	Phone	Time	Temperature	Mask
1	001501	Anderson	0	29		2020/07/16-09:06:38	35.85°C	1
2	001502	polo	0	30	-	2020/07/16-09:06:41	35.88°C	1
3					200	2020/07/16-09:06:43	35.92°C	1
4	001504	nich	1	30	30	2020/07/16-09:06:59	35.90°C	1
5	001505	aimly	0	30	-	2020/07/16-09:07:11	35.86°C	1
6	001506	hamer	1	28	- 1	2020/07/16-09:08:30	36.07°C	1
7	001507	Aaron	0	32	-1	2020/07/17-10:19:56	36.35°C	0
8	001508	Barbara	0	30	51	2020/07/17-10:20:07	36.32°C	1
9	001509	Robert	1	25		2020/07/17-10:20:19	36.32°C	1
10	001510	Henry	1	30	2,	2020/07/17-10:20:21	36.36°C	1
11	001511	Nacy	0	27	-	2020/07/17-10:20:34	36.40°C	1
12	001512	Mike	1	30	5	2020/07/17-10:20:37	35.85°C	1
13	001513	Daisy	1	31		2020/07/17-10:20:39	36.35°C	1
14	001514	Emma	0	31	-6	2020/07/17-10:21:10	36.36°C	0
15	001515	Jack	0	30	•	2020/07/17-10:21:13	36.38°C	1

SPECIFICATION

Operation system	Linux			
Display	7 inch screen TFT			
Speaker	voice prompt			
Language	English, Spanish, etc.			
Face database capacity	50K			
Verification & identification speed	less than 0.1 second for thermal and less than 0.2 second for facial			
Face anti spoofing	printed photo, electronic display of a facial photo, replaying video, 3D face masks, etc.			
Facial recognition accuracy rate	>99.9%			
Forehead thermometer range & accuracy	32°C~42°C, ±0.3°C			
Work range	0.5~1.2m			
Infrared thermal imaging camera	Uncooled infrared focal plane junction detectors array sensor Resolution: 160x120			
Facial recognition camera	dual 1080p starlight CMOS sensors for visible light and near infrared light			
Communication	RS232/485, TCP/IP, USB-Host, USB-Client, RJ45			
Power supply	12V DC 2A			
Ambient temperature	18°C~30°C			

Application

public transportation

airport

office

shopping mall

hospital